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Columnar vortices are known to support a family of waves initially discovered by
Lord Kelvin (1880) in the case of the Rankine vortex model. This paper presents
an exhaustive cartography of the eigenmodes of a more realistic vortex model, the
Lamb–Oseen vortex. Some modes are Kelvin waves related to those existing in the
Rankine vortex, while some others are singular damped modes with a completely
different nature. Several families are identified and are successively described. For each
family, the underlying physical mechanism is explained, and the effect of viscosity is
detailed. In the axisymmetric case (with azimuthal wavenumber m =0), all modes are
Kelvin waves and weakly affected by viscosity. For helical modes (m =1), four families
are identified. The first family, denoted D, corresponds to a particular wave called the
displacement wave. The modes of the second family, denoted C, are cograde waves,
except in the long-wave range where they become centre modes and are strongly
affected by viscosity. The modes of the third family, denoted V, are retrograde,
singular modes which are always strongly damped and do not exist in the inviscid
limit. The modes of the last family, denoted L, are regular, counter-rotating waves for
short wavelengths, but they become singular damped modes for long wavelengths.
In an intermediate range of wavelengths between these two limits, they display a
particular structure, with both a wave-like profile within the vortex core and a spiral
structure at its periphery. This kind of mode is called a critical layer wave, and its
significance is explained from both a physical and a mathematical point of view.
Double-helix modes (m = 2) can similarly be classified into the C, V and L families.
One additional mode, called F, plays a particular role. For short wavelenghs, this
mode corresponds to a helical flattening wave, and has a clear physical significance.
However, for long wavelenghts, this mode completely changes its structure, and
becomes a critical layer wave. Modes with larger azimuthal wavenumbers m are all
found to be substantially damped.

1. Introduction
1.1. Historical background

In a celebrated paper dated 1880, Lord Kelvin (previously known as Sir W. Thomson,
before he received a peerage in 1892) examined the vibrations of a columnar vortex.
After deriving the equations describing the evolution of disturbances on a vortex in
the general case, he examined several particular cases and gave analytical predictions
concerning the vibration frequencies. One of these particular cases corresponded to
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a “core of uniform vorticity (that is to say, rotating like a solid), surrounded by
irrotationally rotating liquid with no slip at the interface”. In modern terms, this
vortex model is known as the Rankine vortex, and the waves sustained by it are
called ‘Kelvin vortex waves’ (or more simply Kelvin waves when no confusion with
the ‘Kelvin tidal waves’ occurring in geophysics is possible). The solution of Kelvin
(1880) still forms the basis of most studies on vortex waves and is reproduced in
several textbooks (e.g. Saffman 1992; Rossi 2000).

The motivation which led Lord Kelvin to study vortex dynamics is quite interesting
from a historical point of view, and is explained in a 1867 paper entitled ‘On
vortex atoms’. Quoting Lord Kelvin (1867), “Helmholtz’s admirable discovery of the
law of vortex motion [. . .] inevitably suggests that Helmholtz’s rings are the only
true atoms”. This argument is developed as follows: “Helmholtz has provided an
absolutely inalterable quality in the motion of any portion of a perfect fluid in which
the peculiar motion which he calls ‘Wirbelbewegung’ (i.e., vorticity) has once been
created. Thus any portion of a perfect fluid which has ‘Wirbelbewegung’ has one of
recommendation of Lucretus’s atoms – infinitely perennial specific quality”.

Lord Kelvin thus proposed founding a theory based on “the hypothesis that all
bodies are composed of vortex atoms in a perfect homogeneous fluid”. According
to this theory, each atom specie was to be associated to a particular knitted or
knotted vortex structure, “the variety of which [being] infinitely more than sufficient
to explain the varieties and allotropies of known simple bodies and their mutual
affinities”. Moreover, the modes of vibration of those vortex structures were expected
to explain the recently discovered spectral emission phenomenon. For example, the
double frequency of the yellow sodium light would be explained by a structure for
the sodium vortex atom admitting two fundamental modes of vibration. Still quoting
Lord Kelvin, “It seems [. . .] probable that the sodium atom may not consist of a
single vortex line, but it may very probably consist of two approximately equal vortex
rings passing through each other like two links in a chain”. In that context, the 1880
article on the ‘Vibrations of a columnar vortex’, which was announced in the 1867
paper but was only to appear thirteen years later, was presented as one of the first
elementary steps towards this new theory.

The theory of vortex atoms may seem somewhat esoteric to a modern observor, but
at that time it was favourably accepted as a working hypothesis by a large part of the
scientific community. It must be recalled that several decades were to pass until the
historical discovery of the atomic structure by Rutherford (1911). Since then the theory
of vortex atoms has not been defended seriously by anyone. However, it is fascinating
to note that Lord Kelvin’s original ideas survive in at least two domains of modern re-
search. First, the efforts to classify knots according to their topological properties, first
expected to give a basis for the classification of atoms, gave birth to the mathematical
theory of knots. This theory is currently flourishing and has found modern applica-
tions in the field of cryptography. Secondly, the most exciting theory of fundamental
particles at the present time, string theory, has a definite resemblance to vortex atoms.

1.2. Review of recent work

The problem initially considered by Lord Kelvin still has a variety of applications. For
example, an application which motivated much work in the last three decades is the
dynamics of trailing vortices shed by the wings of transport aircraft. Here, the vortices
are harmful because of the danger they represent to following aircraft, and instabilities
resulting from the coupling between Kelvin waves are thought of as a possible way
to alleviate them (see Spalart 1998; Jacquin et al. 2003). Another application is the
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dynamics of coherent vortical structures which are ubiquous in turbulent fields and
play a key role in the transport of momentum and the dissipation. Yet another
application is the dynamics of tornadoes.

A large amount of work has been devoted to vortex stability in the last thirty years.
Recent reviews on the topic can be found in Ash & Khorrami (1995), Rossi (2000), and
in the context of aircraft trailing wakes, in Jacquin et al. (2003). In recent literature,
effort is mainly directed at identifying and describing vortex instabilities. Two main
kinds of instabilities have received particular interest. The first kind occur in the
presence of a core axial flow within the vortex. Several families of such instabilities,
both inviscid and viscous, have been identified and described (see Mayer & Powell
1992; Fabre & Jacquin 2004b; and references therein). The second kind of instabilities
occur in vortex systems. They are called cooperative instabilities, and are due to the
straining field induced on each vortex by the others. Cooperative instabilities can be
classified into long-wave and short-wave ones. The long-wave cooperative instabilities
were discovered by Crow (1970) in the case of a vortex pair, and were generalized to
the case of multiple vortex pairs by Crouch (1997) and Fabre, Jacquin & Loof (2002).
The short-wave ones, which are related to the generic elliptic instability mechanism
(Kerswell 2002), were discovered by Moore & Saffman (1975) and Tsai & Widnall
(1976) and are the object of numerous recent studies (see Le Dizès & Laporte 2002;
Sipp & Jacquin 2003; Fukumoto 2003; Fabre & Jacquin 2004a; and related papers).
Note that both kinds of cooperative instabilities can be explained as a resonance
mechanism involving a pair of Kelvin waves. Therefore, an inspection of these waves
is necessary prior to an investigation of the instability.

Compared to this abundant literature devoted to vortex instabilities, Kelvin waves,
which are at best neutral and generally damped, have received less interest. Only two
kinds of waves have been investigated in the last few decades. First, axisymmetric
waves have been studied by Benjamin (1962) and Leibovich (1970) (among others).
The motivation for those studies came from the vortex breakdown phenomenon, which
is related to a transition from a supercritical state (where axisymmetric waves only
propagate downstream) to a subcritical state (where axisymmetric waves propagate
both upstream and downstream).

Secondly, the particular helical wave referred to herein as the displacement wave,
which is responsible for long-wave distortions of a vortex filament, plays a key role
in at least three very different situations. First, in aircraft vortex wakes, it participates
in the long-wave cooperative instability mechanism mentioned above (Crow 1970;
Moore & Saffman 1972; Widnall, Bliss & Zalay 1971). Secondly, in rotating turbul-
ence, it is responsible for the transport of momentum and energy from turbulent zones
to quieter zones (Hopfinger, Browand & Gagne 1982). Finally, the propagation of
Kelvin displacement waves along quantized vortices is essential to the transfer of
energy in superfluid turbulence (Barenghi, Donelli & Wien 2001). Thus, this kind of
wave has been studied extensively using various methods, such as asymptotic expansi-
ons of the stability equations (Leibovich, Brown & Patel 1986), or vortex filament
methods (Samuels & Donelly 1990; Klein & Majda 1991a, b; and related papers).

In addition to the applications described above, recent developments indicate at
least two situations where Kelvin waves seem to play a key role. First, Kelvin waves
may be excited by a turbulent field surrounding the vortex core. This was shown using
numerical simulations by Melander & Hussain (1993) and was further demonstrated
for a Rankine vortex by Miyazaki & Hunt (2000) in the context of rapid distortion
theory. Recently, Antkowiak & Brancher (2004) performed an optimal perturbation
analysis of a Lamb–Oseen vortex and also observed that some kinds of helical
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waves can be efficiently excited. This excitation of waves by surrounding turbulence
is suspected to be responsible for the vortex meandering phenomenon, which is
ubiquous in trailing vortex experiments (Jacquin et al. 2003). Secondly, a phenomenon
called vortex bursting, which is known to occur in an unpredictable way on trailing
vortices (Spalart 1998), seems to be explainable as resulting from the collision of two
axisymmetric wave packets propagating in opposite directions (Moet et al. 2005).

Despite the ubiquous role of Kelvin waves in vortex dynamics, the only case which
has been studied in a comprehensive way is the Rankine vortex initially considered
by Lord Kelvin (1880). However, this model is somewhat unrealistic because of the
discontinuity of the vorticity field at the vortex interface. Furthermore, it is by nature
an inviscid model, and does not allow consideration of the effect of viscosity on the
waves in a proper way. Therefore, the application of Lord Kelvin’s results to real-life
vortices is questionable, and more representative vortex models have to be considered.
One of the simplest models for this purpose is the Lamb–Oseen vortex, defined by
a Gaussian distribution of vorticity. Motivated by the application to short-wave
cooperative instabilities, Sipp conducted a numerical stability study of this vortex
model in the inviscid case (Sipp 1999; see also Sipp & Jacquin 2003). He discovered
that in addition to regular, non-damped waves, the Lamb–Oseen vortex also possesses
singular, damped modes. This feature is a significant qualitative difference with the
case of a Rankine vortex where all waves are strictly neutral. The results of Sipp
were recently complemented by Le Dizès & Lacaze (2005) using a large-wavenumber
asymptotic analysis.

The computation of inviscid singular modes such as those previously described
requires a deformation of the integration path into the complex r-plane. This
procedure, which is commonly used for the stability of parallel flows, leads to the
prediction of modes possessing a critical layer singularity. This singularity must be
regularized using either viscosity or nonlinearity. Le Dizès (2004) recently justified this
procedure in the viscous case using a large-Reynolds-number asymptotic analysis. His
results indicate that the inviscid modes computed by Sipp may effectively be reached
as the limit of modes computed in the viscous framework as Re → ∞. In addition,
he described the structure of these modes in the vicinity of the critical layer. It is one
of the objectives of the present paper to check these predictions.

In a related study (Fabre 2002) the linear dynamics of the Lamb–Oseen vortex
is investigated from the complementary point of view of an initial value problem.
Several kinds of initially localized perturbations are imposed on the vortex and give
rise to the propagation of wave packets. The results are compared to a similar
study performed by Arendt, Fritts & Andreassen (1997) for the Rankine vortex and
important differences are pointed out. That study complements the present one and
illustrates how the various waves presented here can effectively contribute to the
response of a vortex to a localized perturbation.

1.3. Presentation of the paper

This paper has three goals. The first is to provide an exhaustive description of the
normal modes of the Lamb–Oseen vortex, and to propose a complete classification
of the modes into several families. To achieve this, the various families of modes are
successively described and their structure is illustrated, focusing on a moderate value
of the Reynolds number (Re = 1000), and on the long and medium wavelength range
(i.e. wavelengths comparable to the core radius and longer).

The second goal is to clarify the physical mechanisms responsible for wave
propagation. The occurrence of waves is usually attributed to the rotation of the
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vortex core, and Kelvin waves are thought of as inertial waves due to rotation
which are guided along the vortex core (Rossi 2000). This picture is accurate when
considering waves with short wavelengths compared to the vortex core. For example,
in the short-wave limit, the relative frequency of the waves (with respect to the frame
rotating with the vortex centre) is, in absolute value, twice the background rotation
rate (Le Dizès & Lacaze 2005), just the value corresponding to pure inertial waves.
On the other hand, this picture is questionable in the long and medium wavelength
regimes. As will be shown, different underlying physical mechanisms have to be
invoked for each family of waves.

The third goal is to investigate the effect of viscosity. First, viscosity is found to lead
to a new class of fully viscous, strongly damped modes, which coexist with the Kelvin
waves. Secondly, and most interestingly, the effect of viscosity is found to be singular
for most of the Kelvin waves, in the sense that the corresponding eigenmodes do not
possess a regular limit as Re → ∞. Two main kinds of singularities are described. The
first is a critical layer singularity. In this case, the modes are inviscid at leading order
except in an annular region outside the vortex where viscosity occurs at leading order
and leads to the appearance of a spiral structure. For these modes, comparisons with
the inviscid results of Sipp & Jacquin (2003), and with the asymptotic analyses of
Le Dizès (2004) and Le Dizès & Lacaze (2005) will be presented. The second kind
of singularity, which occurs for most waves in the long-wave limit, is a centre-mode
singularity. In this case the radial structure of the modes shrinks towards the vortex
centreline, leading to an enhanced dissipation.

The paper is organized as follows. Section 2 presents the base flow, the stability
equations and the numerical method. Section 3 introduces the nomenclature used
for the classification of the normal modes into several families. The axisymmetric
modes (m = 0) are presented in § 4. The study of helical modes (|m| =1), presented
in § 5, forms the largest part of this paper. Four families of modes, called D, C, V
and L, are identified and successively described (in § § 5.1, 5.2, 5.3 and 5.4). Section 6
considers the cases of double-helix modes (|m| =2) and higher-order modes. Section
7 summarizes the conclusions.

2. Starting equations and numerical method
2.1. Base flow

The base flow considered in this paper is a Lamb–Oseen vortex, oriented along the
z-direction, with a circulation Γ and a radius a, in an incompressible fluid of density
ρ = 1 and viscosity ν. The geometry and the coordinate system are sketched in figure 1.
Note that the z-axis is directed in the horizontal direction, so that the direction of
negative and positive z will simply be referred to as the ‘left’ and ‘right’ directions.

Using cylindrical coordinates (r, θ, z), the azimuthal velocity law of the Lamb–Oseen
vortex is

V (r) =
Γ

2πr

(
1 − e−r2/a2

)
. (2.1)

This model corresponds to a self-similar solution of the Navier–Stokes equation with
a radius increasing in time as a(t)2 = a(0)2 + 4νt . Here, the base-flow diffusion is
ignored and the vortex is considered as ‘frozen’, with a constant radius a. The effect
of viscosity is characterized by a Reynolds number, defined as Re =Γ/(2πν). For non-
dimensionalization, the vortex radius is taken as a = 1, and the circulation as Γ = 2π.
In the following, Ω(r) = V (r)/r =(1 − e−r2

)/r2 and Ξ (r) = (1/r)(∂/∂r)[rV (r)] = 2e−r2

will denote, respectively, the angular velocity and the axial vorticity.
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Figure 1. Sketch of the vortex and coordinate systems.

The approximation of a frozen base flow is commonly done in stability analyses
because it allows perturbations to be considerd in the form of eigenmodes. However,
on the time scale t = O(Re) where the base-flow diffusion becomes non-negligible,
eigenmodes cease to be a valid approximation of the solution. As a consequence, it
must be kept in mind that an eigenmode is only relevant when its own time scale
(the inverse of its frequency or the inverse of its damping rate, depending on which
quantity is most relevant) is smaller than Re.

2.2. Stability equations

In the stability analysis we consider infinitesimal disturbances in the form of
eigenmodes, characterized by an axial wavenumber k, an azimuthal wavenumber
m, and a complex frequency ω, i.e.

(u′
r , u

′
θ , u

′
z, p

′) = [u(r), v(r), w(r), p(r)] exp(ikz + imθ − iωt) + c.c., (2.2)

where c.c. stands for the complex conjugate. Linearization of the continuity, r-, θ-
and z-momentum equations leads to the following set of equations:

1

r

∂

∂r
(ru) +

im

r
v + ikw = 0, (2.3a)

i(mΩ − ω)u − 2Ωv +
∂p

∂r
=

1

Re

[(
∆m,k − 1

r2

)
u − 2im

r2
v

]
, (2.3b)

i(mΩ − ω)v + Ξu +
im

r
p =

1

Re

[(
∆m,k − 1

r2

)
v +

2im

r2
u

]
, (2.3c)

i(mΩ − ω)w + ikp =
1

Re
∆m,kw. (2.3d)

In these equations, the notation ∆m,k corresponds to the Laplacian operator, i.e.

∆m,k =
∂2

∂r2
+

1

r

∂

∂r
− k2 − m2

r2
. (2.4)

When proper limit conditions are imposed (see, for example, Fabre & Jacquin
2004b), this system constitutes an eigenvalue problem which admits non-trivial
solutions for discrete sets of (ω, m, k). In this paper we perform a temporal stability
analysis, which consists of setting the wavenumbers (m, k) with k real and solving for
the frequency ω, which is a priori a complex number. The real part of the frequency
ωr is the oscillation rate of the wave, and the imaginary part ωi , which is always
negative here, corresponds to its damping rate.
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In the description of the eigenmodes, we will often refer to the radial, azimuthal,
and axial components of the vorticity, defined as follows:

ξr =
imw

r
− ikv, ξθ = iku − ∂w

∂r
, ξz =

1

r

∂(rv)

∂r
− imu

r
. (2.5)

2.3. Numerical method

The numerical method used here is a Chebyshev spectral collocation method,
essentially identical to that described in Fabre & Jacquin (2004b) and Fabre (2002).
This method consists of the following steps:

(i) The stability equations (2.3a − d) are manipulated in order to eliminate
the pressure and axial velocity components. This leads to a reduced system for
[u(r), v(r)]T .

(ii) This reduced system is mapped from the physical domain r ∈ [−∞, ∞] to the
Chebyshev domain ξ ∈ [−1, 1]. Here, two mapping functions are used. The first one
is the algebraic mapping used in Fabre & Jacquin (2004b), and the second one is a
complex mapping which is presented in Appendix B.

(iii) The unknown eigenfunctions u(ξ ) and v(ξ ) are expanded as a series of N + 1
Chebyshev polynomials in terms of the mapped variable ξ . Thanks to the parity
properties of the eigenfunctions, only odd polynomials are used for even wavenumbers
m, and only even polynomials are used for odd wavenumbers m.

(iv) The Chebyshev expansions are introduced into the stability equations, which
are expressed at N +1 suitably defined collocations points. This leads to a discretized
eigenvalue problem with order 2(N + 1).

(v) This discretized eigenvalue problem is solved using a global eigenvalue method.
Here, this is done with the QZ algorithm, as implemented in the Lapack routine
Zggev.

(vi) Finally, the physically relevant modes are sorted from the spurious ones using
a suitably defined convergence criterion.

As discussed in Fabre & Jacquin (2004b), this method is rapid and efficient,
and allows accurate results without the need of an explicit imposition of the limit
conditions. The number of collocation points of N = 140 was used in most of the
computations. This value was found to be large enough to resolve accurately the
spectrum of the Lamb–Oseen vortex, and low enough to guarantee the absence of
round-off errors due to the stiffness of the eigenvalue problem.

The complex mapping was particularly helpful to compute the frequencies of the
modes belonging to the L family (figures 6 and 20). On the other hand, all the figures
displaying the structure of the modes had to be done using the real mapping.

3. Wave classification
This section introduces several definitions which are helpful in classifying the

eigenmodes from a physical point of view.
The azimuthal wavenumber m allows the modes to be classified according to their

geometry. The value m =0 corresponds to axisymmetric modes or, following Saffman
(1992), ‘sausaging modes’. Eigenmodes with m = ±1 are helical modes, also called
‘bending modes’. Eigenmodes with |m| > 1 are multiple helices, and Saffman (1992)
proposed the name ‘fluted modes’.

The quantity −m/k corresponds to the pitch, and the sign of this quantity distin-
guishes left-handed helices (m/k > 0) from right-handed helices (m/k < 0). Due to the
symmetries of the problem, ω(m, k) = ω(m, −k) = − ω∗(−m, k), the star denoting the
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complex conjugate. So, left-handed and right-handed modes have symmetrical prop-
erties, and in the analysis we shall restrict to m � 0, k � 0 without loss of generality.

For m �= 0, the quantity ωr/m corresponds to the angular frequency of the mode.
Modes such that ωr/m � 1 are observed to rotate faster than the vortex core and will
be called cograde modes. Modes such that 0 � ωr/m � 1 rotate in the same direction
as the vortex, but when observed in a frame rotating with the vortex centreline they
appear to rotate in the opposite direction. They will be referred to as retrograde
modes. Modes with ωr/m � 0 are observed to rotate in a direction opposite to that
of the vortex core, and will be referred to as countergrade modes. Finally, modes with
ωr = 0 are stationary modes. The two latter categories only exist for m = ±1.

The quantity ∂ωr/∂k corresponds to the group velocity, and indicates the propaga-
tion velocity of wave packets in the axial direction. According to the conventions
introduced in figure 1, modes with ∂ωr/∂k < 0 and ∂ωr/∂k > 0 will be referred to as
left-propagating modes and right-propagating modes, respectively.

Note that some authors have distinguished slow waves and fast waves according to
their phase velocity ωr/k in the long-wave limit. However, this choice may lead to
some inconsistencies and difficulties; for example, the phase velocity may be infinite
for some waves, and does not respect Gallilean invariance. As a consequence, we did
not follow this classification here and preferred to use the group velocity.

Finally, the asymptotic properties of the eigenmodes in the limit Re → ∞ allow them
to be classified into regular modes and singular modes. Eigenmodes are considered
as regular when both their frequency and their eigenstructure admit a regular
development with the following form:

ω = ω(0) + Re−1ω(1) + O(Re(−2)), (3.1)

[u(r), v(r), w(r), p(r)] = u(0)(r) + Re−1u(1)(r) + O(Re(−2)). (3.2)

For such regular modes, the leading order [ω(0), u(0)(r)] can be computed using the
inviscid equations, and the corresponding frequency ω(0) is always pure real. The term
ω(1) is pure imaginary and gives the leading-order contribution to the damping rate.
The term u(1)(r) corresponds to the viscous correction to the eigenmode structure.

In the following, we will restrict the name Kelvin waves to the regular modes,
because of their clear relation to the waves initially discovered by Lord Kelvin (1880)
for the Rankine vortex. On the other hand, we will call the modes which do not
follow this development ‘singular modes’ (although the two categories overlap, to a
certain extent, in the case of the critical layer waves).

4. Axisymmetric modes (m = 0)
4.1. Description

We begin our presentation with the axisymmetric modes (m = 0). Figure 2 displays
the oscillation rates ωr computed for Re = 1000, in the range of axial wavenumbers
0 � k � 5. In this figure, we have represented with a greyscale the damping rates
ωi . With this convention, the dark curves correspond to weakly damped waves, and
the branches progressively lighten and vanish as their damping rate increases. Two
sets of branches with symmetric frequencies can be distinguished. The waves of the
first set have positive oscillation frequencies ωr and positive slopes ∂ωr/∂k (i.e. group
velocities), so they can be identified as right-propagating waves. The waves of the
second set are left-propagating waves with negative oscillation frequencies ωr and
symmetrical properties. These features are essentially similar to the case of a Rankine
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k

ωr

0 1 2 3 4 5

–1

0

1 –ωi

0.27
0.24
0.21
0.18
0.15
0.12
0.09
0.06
0.03
0

>0.3

Figure 2. Frequencies of the axisymmetric (m = 0) eigenmodes, for Re = 1000.

vortex (e.g. Saffman 1922; Arendt et al. 1997), except, of course, for the damping rate
resulting from viscosity.

Figure 3 illustrates the structure of some axisymmetric waves. The plots display
iso-levels of the axial vorticity Re[ξz(r) exp(ikx)] (upper half) and the azimuthal
vorticity Re[ξθ (r) exp(ikx)] (lower half) of the eigenmodes in the (r, z)-plane. The four
examples of waves depicted in the figure correspond to those computed for k = 1,
on the first and second branches of right-propagating and left-propagating waves
(numbered from outermost to innermost), respectively. As can be observed, the radial
structure of the ξz eigencomponent displays one node for the waves computed on
the first branches, and two nodes for those computed on the second branches (and
so on for the higher branches). The left-propagating waves differ from their right-
propagating counterparts by a phase shift between the ξz and ξθ components, and
also, by a slight dissymmetry of their structure (which can be seen by comparing the
position of the iso-level corresponding to the value 0 between plots a and c, or b and
d). This latter effect is a result of viscosity: in the purely inviscid case the structure
of the left-propagating and right-propagating waves would be identical.

Finally, it is worth mentioning that all the axisymmetric waves computed and
presented here conserve the circulation of the vortex (because the limit conditions
require the eigencomponents to decrease exponentially as r → ∞, and therefore the
associated circulation 2πrv(r) vanishes).

4.2. Physical mechanism

The physical mechanism responsible for the propagation of axisymmetric waves is
explained in figure 4.

Figure 4(a) displays the structure of a vortex deformed by an axisymmetric standing
wave†. The perturbed vortex has a varicose shape, which consists of an alternance
of regions of high and low vorticity. Because of the conservation of circulation, the
vortex radius is smaller in the regions of high vorticity and larger in the regions of
low vorticity.

† What we call a standing wave is a perturbation oscillating in place without propagating. As in
other well-known situations (for example, acoustic or surface waves), such a standing wave can be
constructed as the superposition of two propagating waves with opposite directions.
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Figure 3. Structure of some axisymmetric Kelvin waves, for Re= 1000, k =1: (a, b) first and
second right-propagating waves; (c, d) first and second left-propagating waves. The upper and
lower parts of the figure display, respectively, the axial vorticity (ξz) and azimuthal vorticity
(ξθ ) components in the (r ,z)-plane. Nine equally spaced iso-levels are displayed (including
zero), and the dashed levels correspond to negative values. (a) ω = 0.5306 − 0.0078i, (b)
ω =0.2973 − 0.0243i, (c) ω = −0.5306 − 0.0078i, (d) ω = −0.2973 − 0.0243i.

(b)

(c)

(a)

p′ < 0 p′ > 0 p′ < 0

Figure 4. The physical mechanism for the propagation of axisymmetric Kelvin waves.
See explanations in text.
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Now, the thinner the vortex is, the larger is the depression within its core.
Therefore, the varicose shape is associated with an alternance of high and low
pressure perturbations (with respect to the pressure level of the vortex core in the
unperturbed state). Therfore, a net axial pressure gradient exists within the core, and
induces an axial flow. This effect is indicated by the arrows in figure 4(b).

Finally, as illustrated in figure 4(c), the axial flow within the vortex affects the
axial vorticity through a stretching–compressing mechanism. In the regions of axial
divergence, the vorticity is stretched, and the vortex radius is reduced. On the other
hand, in the regions of axial convergence, the vorticity is compressed, and the vortex
radius is augmented. The final effect is to reverse the initial varicose shape of the
vortex. Note that an alternative explanation, based on the twisting of the vortex lines,
was proposed by Melander & Hussain (1994) and Arendt et al. (1997).

The mechanism illustrated above strictly applies only to a standing wave, and only to
the waves corresponding to the first branch, with the simplest internal structure (such
as those depicted in figures 3(a) and 3(c)). However, a standing wave can be construc-
ted as the superposition of a left-propagating wave and a right-propagating wave, and
the mechanism for standing and propagating waves is the same, except for a phase shift
between the ξz and w components. This sequence of events also applies to the waves
on the higher branches, such as those described in figures 3(b) and 3(d), except that
the mechanisms act in opposite directions in the inner and outer parts of the vortex.

4.3. Effect of viscosity

The effect of viscosity on the axisymmetric waves has been investigated by repeating
the calculations with other values of the Reynolds number, and also by asymptotic
analyses in the limit Re → ∞ (Fabre 2002). This effect is quite trivial and only a brief
account is given here. Axisymmetric waves are all found to be regular according to the
definition given in § 3. On each branch, the leading-order frequency ω(0) is pure real
and corresponds to the inviscid frequency computed by Sipp & Jacquin (2003). The
next term ω(1) is pure imaginary and corresponds to the damping rate. This damping
rate is a growing function of k, and for fixed k it is larger for the waves on the higher
branches. These features are consistent with the greyscales of the curves in figure 2.
The eigenmodes admit a regular development with the form (3.2), and the term u(1)

is responsible for the dissymmetry between left- and right-propagating waves which
has been observed in figure 3.

Note, however, that the regular development (3.1)–(3.2) ceases to be valid in the
long-wave limit (k → 0). Inspection shows that this occurs as soon as k = O(Re−1).
However, this limit seems of little practical interest.

5. Helical modes (m =1)
Figure 5 displays the frequencies of helical, left-handed (m =1) modes computed

for Re = 1000 (with the same conventions as in figure 2), and figure 6 shows a close-up
view of these results for the range 0 < ωr < 0.16. The picture is, at first sight, far
more complex than for the axisymmetric case. At least four families of branches of
the dispersion relation can be distinguished, and are identified by letters D, C, V and
L in the figure.

The first family, called D, consists of the particular wave which is countergrade
and left-propagating for all wavelengths, and whose frequency vanishes as k → 0.
The branches of the second family, called C, are right-propagating, cograde waves,
except in the long-wave range where they become retrograde. The branches of the
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Figure 5. Frequencies of the helical (m = 1) eigenmodes, for Re = 1000.
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Figure 6. As in figure 5, but with a closer view of the frequencies of the L eigenmodes.

third family, called V, are always retrograde, and become strongly damped as their
wavenumber is increased. Finally, the branches of the fourth family, called L, are
located in the region −1 < ωr < 0.16. Figure 6 shows a close-up view of these
branches, and shows that this family may be further decomposed into two subsets.
The first kind of branch, denoted L1, is retrograde for small wavenumbers, but become
stationary, and then countergrade, above a particular value of k. The second kind
of branch, denoted L2, is always retrograde and displays a different behaviour. At
least nine L1 branches and three L2 branches could be computed and are displayed
in the figure. In the range of wavenumber displayed two of the L1 branches become
countergrade waves, respectively for k > 2.262 and k > 3.975.

Figure 7 is another illustration of the proposed eigenmode classification. This
figure displays, in the complex ω-plane, the discrete eigenvalues (with diamond
symbols) computed for a single value of the wavenumber, namely k = 3. The four
families of waves are clearly separated in this picture. The L1 and L2 subsets of the
family L are also identified (for k = 3 only one mode of the L1 family is located in
the countergrade range).
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Figure 7. Spectrum in the complex ω-plane for m= 1, k = 3,Re= 1000. The diamond symbols
and the thick line indicate, respectively, the discrete eigenvalues (computed) and the position
of the continuous spectrum (assumed, see Appendix A).

Note that the discrete eigenmodes, considered alone, do not form a complete basis
on which to decompose an arbitrary perturbation: a viscous continuous spectrum must
also be included, as a consequence of the unbounded nature of the problem. The de-
scription of this continuous spectrum is still an open issue. In Appendix A, we present
an argument indicating that it is located along the imaginary axis and below the value
ω = −ik2/Re. This expected continuous spectrum is depicted by a thick line in figure 7.

Compared to the case of a Rankine vortex (e.g. Saffman 1992; Arendt et al. 1997),
significant differences are observed, and have already been pointed out by Sipp &
Jacquin (2003) in the inviscid case. The most striking difference is found in the
retrograde range. In this range, the Rankine vortex admits a set of neutral, left-
propagating waves, which all start from ω = 1 for k = 0 and become countergrade as
k is increased, whereas the Lamb–Oseen vortex possesses several families of singular,
damped modes. The first family, called L1 here, has already been described by Sipp &
Jacquin (2003) in the inviscid case. The other families observed in this interval, called
V and L2, are newly discovered.

In the following subsections these four families of modes are successively described.
In each case, the physical mechanism responsible for their propagation or attenuation
is explained, and the effect of viscosity is detailed.

5.1. The displacement wave (branch D)

5.1.1. Description for Re= 1000

Let us consider, first, the particular branch noted D in the previous figures. This
wave has been particularly studied by Leibovich et al. (1986), who called it the slow
wave because its phase velocity tends to zero as k → 0. Their results show that the
properties of this wave weakly depend upon the vortex core details and are generic
to all vortex models. In particular, it is the only helical wave to have a full equivalent
in the case of a Rankine vortex.
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Figure 8. Structure of the ‘helical displacement wave’ for Re= 1000; (a) k = 0.1,
ω = −0.012 − 4.7 × 10−5i; (b) k = 3, ω = −0.5602 − 0.0124i. Iso-levels of the axial vorticity
(ξz) component in the (x, y)-plane. Eight equally spaced levels are displayed, and dashed levels
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Figure 9. The physical mechanism for the helical displacement wave (branch D).
See explanations in text.

The structure of this wave is illustrated in figure 8, for k =0.1 and k =3, respectively.
The plots display iso-levels of the axial vorticity eigencomponent Re[ξz(r) exp(imθ)]
in a transverse (x, y)-plane. As can be observed, the eigenmode takes the form of
a dipole of vorticity and is weakly dependent upon the axial wavenumber. When
superimposed onto the base flow, the effect of this dipole is to increase the vorticity
in one half of the vortex core, and to decrease it in the other half. Therefore, the net
effect corresponds to a displacement of the whole vortex core in a helical way. This
justifies the denoting of this wave as a displacement wave.

5.1.2. Physical mechanism

In the two-dimensional case (k = 0), the displacement wave reduces to a simple
translation of the vortex and is stationary and neutral (ω =0). This property simply
results from the conservation of momentum (Bernoff & Lingevich 1994). For k �= 0
three-dimensionality leads to a rotation of the wave in a direction opposite to that of
the vortex. The physical mechanism responsible for this counter-rotation is explained
in figure 9. The figure represents a plane wave which takes the form of a sinusoidally
displaced vortex filament located in the (x, z)-plane (such a plane wave can be
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constructed as the superposition of two helical waves with m = ±1, and the physical
mechanism is the same for plane and helical waves). On each section of the vortex
filament, the velocity can be computed as a Biot-Savart integral expressing the sum of
the elementary velocity fields induced by all the other parts of the filament. For long
wavelengths it can be expected that the dominant part of the integral will come from
the neighbouring parts of the filament. (This approximation is known as the local
induction approximation (LIA), and some points of justification are given in Saffman
(1992).) Let us apply this argument to evaluate the velocity at a section, labelled
A in figure 9, where the x-displacement of the vortex is maximum. The elementary
velocity field induced by a section B situated just left of section A takes the form of
circular streamlines which encircle the tangent to the axis of the filament in section B.
Due to the curvature of the vortex, the point A is located below this tangent line,
so the velocity induced in section A is directed towards negative y. Similarly, the
elementary velocity field induced at section A by a section C located just right of it
is also directed in the negative y direction. This argument may be repeated for other
sections of the filament. For example, the velocity induced at sections D and E of
the vortex, where the x-displacement is negative, is directed towards positive y. As
a consequence, the whole filament tends to precess about the z-axis in a direction
opposite to that of the circulation of the vortex.

5.1.3. Effect of viscosity

For the case Re = 1000 displayed in figure 5, the displacement wave is the least
affected by viscosity of all helical waves, and indeed of all Kelvin waves. In the
interval 0 < k < 5, the damping rate always satisfies |ωi | < 0.03.

As for the axisymmetric waves, the frequency of the helical displacement wave
admits a regular development with the form (3.1). In the inviscid case, the behaviour
of the frequency as k → 0 was investigated by Leibovich et al. (1986), and found to
be ω(0) = −k2(ln(1/|k|) + 0.0577) + O(k4 log |k|). Inspection shows that in this limit
the regular development (3.1) still holds, and that the term ω(1) is also O(k2 log |k|).
However, the corresponding coefficient has not been calculated.

5.2. The core waves (family C)

5.2.1. Description for Re= 1000

Let us consider, now, the second family of helical modes, denoted C in figures 5
and 7. Figure 10 illustrates the structure of two eigenmodes computed on the first and
second branches of this family, for k = 5 and Re= 1000. As can be seen, the structure
of these modes is located entirely within the vortex core, whose approximate extent
is represented by the dotted circles in the plots. The mode on the first branch takes
the form of a simple dipole (figure 10a). The mode on the second branch is described
as two overlapping dipoles (figure 10b). Similarly, the modes on the higher branches
are multiply overlapping dipoles. The slight reflectional dissymmetry observed in the
structure of the modes is, again, an effect of viscosity.

The location of the eigenmodes within the vortex core is one of the distinctive
properties of the C family, and justifies the denomination of these waves as core
waves. An other distinctive property is that, except in the long-wave regime which
will be considered below, these waves are essentially cograde.

5.2.2. Physical mechanism

The physical mechanism explaining the properties of core waves is illustrated in
figure 11. Figure 11(a) sketches the structure of a core wave in a plane perpendicular
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Figure 10. Examples of C waves for m= 1, k = 5, Re= 1000; (a) ω = 1.9920 − 0.0625i;
(b) ω = 1.7031 − 0.1114i. Same conventions as in figure 8.
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Figure 11. The physical mechanism for the C waves. See explanations in text.

to the vortex axis. One recognizes a dipole of axial vorticity ξz superimposed onto
the vortex and located around its centre. (To picture the three-dimensional structure
of this wave, it must be imagined that this dipole is wrapped in a helical way around
the vortex centreline.)

Let us follow the evolution of this initial dipole in a reference frame (x ′, y ′, z)
rotating with the angular velocity of the vortex centreline. At first, as the dipole is
entirely located within the vortex core where the rotation rate is almost constant,
it experiences at leading order the effect of a uniform background rotation. As a
consequence, the left half of the dipole is of anticyclonic nature, and is associated with
a high-pressure region. On the other hand, the right half of the dipole of figure 11(a) is
of cyclonic nature, and is associated with a low-pressure region.

Now, the effect of these high- and low-pressure regions is to induce an axial flow
within the vortex core (depicted by the arrows in figure 11(b)). This axial flow affects,
in turn, the vorticity of the base flow. As illustrated in the plot, the axial velocity
stretches the left half of the dipole, and compresses its right half. The effect of this
stretching/compressing is to increase the vorticity levels in the left half and to decrease
the vorticity levels in the right half. Therefore, the initial vorticity dipole tends to
reverse its initial orientation.
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Figure 12. Structure of the eigenmode on the first C branch, for m= 1, Re= 105, and
various values of the wavenumber k. (a) k = 1, ω = 1.2099 − 4.01 × 10−4i; (b) k = 0.5,
ω = 1.0708 − 8.05 × 10−4i; (c) k = 0.1, ω = 1.0003 − 5.212 × 10−3i. Illustration of the centre-
mode behaviour as the wavenumber k is decreased. Same conventions as in figure 8.

This effect, alone, would lead to a wave which is stationnary in the rotating frame,
and therefore rotating at exactly the angular velocity of the vortex centreline in
the fixed frame. So, there must be an additional effect responsible for the cograde
movement. This effect arises from the fact that the rotation of the vortex core is not
exactly a solid body rotation, but a differential rotation. When observed from the
rotating frame, this differential rotation is observed as a retrograde movement of the
parts of the vortex surrounding the axis. As illustrated in figure 11(c), this retrograde
flow convects the axial flow. As a result, the part of the vortex which experiences a
stretching is not the left half of the dipole, but a region located above. Similarly, the
part of the vortex which experiences compression is not the right half, but a region
located below. As a consequence, the result of the axial flow is to induce a new dipole
which is tilted with respect to the initial dipole in the direction of the vortex rotation.
The cograde rotation of the wave is thus explained.

This scenario is of course questionable because it retains only a few of the possible
physical mechanisms. However, the retained mechanisms are precisely those which
occur at leading order in a long-wave asymptotic analysis (Fabre 2002; Fabre &
Le Dizès 2006).

5.2.3. Effect of viscosity

The effects of viscosity on the modes described here are shown when comparing
the viscous results presented in figure 5 with the inviscid results of Sipp & Jacquin
(2003). At first, as could be expected, viscosity leads to a damping of these waves.
For Re= 1000, the least-damped C wave is found on the first branch for k = 1.62 and
corresponds to ω = 1.3821 − 0.0331i. A second and less expected effect of viscosity is
found in the long-wave range. As can be observed, when the wavenumber is decreased
towards zero, all the branches of the C family progressively change from cograde
to retrograde. Moreover, the damping rate of the modes, which passes through a
minimum for a finite value of k, increases as k → 0. As we shall now argue, these
trends are explained by the fact that in this limit, the modes cease to behave as
regular Kelvin waves, and become a kind of singular mode called centre modes.

This centre-mode behaviour is best illustrated at a larger value of the Reynolds
number. Figure 12 shows the evolution of the eigenmode computed on the first
branch of a C wave, for Re= 105, as the wavenumber k is decreased. Figure 12(a), for
k = 1, shows the typical dipole structure already described. Figure 12(b) corresponds
to k = 0.5. As can be observed, the structure of the mode remains essentially the
same, but at a smaller scale. This narrowing of the mode structure can be understood
in the framework of the physical scenario described above. As the axial gradients
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decrease because of the increasing of the wavelength, larger pressure levels in the
cyclonic and anticyclonic regions are required to induce the axial flow necessary to
sustain the wave. A narrow cyclone (resp. anticyclone) leading to a strong depression
(resp. high-pressure region), is realized with a stronger concentration of the vorticity
dipole. Note that when k is decreased from 1 to 0.5, the damping rate of the waves is
increased by nearly a factor 2. This feature is also fairly well understood, a reminder
that stronger radial gradients result in a higher dissipation. In this regime, the waves
remain inviscid at leading order and can be identified as inviscid centre-modes.

Figure 12(c) corresponds to k = 0.1. Now, the structure of the eigenmode has
changed dramatically, and has acquired a characteristic spiral shape. By the same
time, the damping rate of the mode has strongly increased, and it is now more than
ten times higher than the value it had for k =1. In the framework of our physical
scenario, these dramatic changes can be understood by supposing that the structure
of the mode has become so narrow that the effect of viscosity is now comparable
in magnitude with the mechanisms responsible for the wave propagation. In this
regime, the structure of the modes becomes viscous at leading order, and they can be
identified as viscous centre-modes.

All the trends just described are captured well by an asymptotic analysis conducted
by Fabre & Le Dizès (2006). In particular, this study shows that the transition from
inviscid centre-modes to viscous centre-modes occurs as soon as k =O(Re−1/4), and
that the frequency then follows a scaling with the form ω = m + O(Re−1/2). On the
other hand, it can be checked that for fixed k and Re → ∞, the frequencies of the
core waves admit a regular expansion with the form (3.1).

5.3. The purely viscous modes (family V)

The third family of modes denoted V in figures 5 and 7, are purely viscous modes,
and have no counterparts in the inviscid results of Sipp & Jacquin (2003). One could
be tempted to identify them with the inviscid, regular modes which exist in the same
range of frequencies for the Rankine vortex. However, inspection shows that the
structure of the eigenmodes is completely different.

Two specimens of eigenmodes, computed on the first (i.e. least damped) branch
of the family, are displayed in figure 13. For k = 0.1 (figure 13a), the eigenmode is
very similar to the C mode displayed in figure 12(c), and is characterized by a spiral
structure located in the vicinity of the centreline. As can be observed in figure 13(b)
corresponding to k = 1, increasing the wavenumber results in an extension of the
spiral structure, which tends to occupy the whole vortex core, a larger number of
spiral turns, and an increase of the damping rate.

In the large-Reynolds-number limit, these modes become centre-modes with a
structure very similar to the unstable modes existing in trailing vortices and studied by
Fabre & Jacquin (2004b). Le Dizès & Fabre (2006) recently conducted an asymptotic
study which encompasses all kinds of viscous centre-modes in the same framework.
The present modes correspond to viscous centre-modes of kind C in the nomenclature
of Le Dizès & Fabre (2006). The asymptotic prediction for their frequency (valid for
m > 0) is as follows:

w ≈ m + 3e−5iπ/6 k2/3Re−1/3 +

(
N +

1

2

)√
6m e−3iπ/4 Re−1/2 (with N = 0, 1, 2, . . .).

Numerical results for the Lamb–Oseen vortex are in good accordance with this
expression for Re � 106, but a detailed comparison is not presented here.
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Figure 13. Examples of V eigenmodes (m= 1,Re = 1000). (a) k = 0.1, ω = 0.8664 − 0.1223i;
(b) k = 1, ω = 0.7023 − 0.1881i. Same conventions as in figure 8.

5.4. The L branches

Let us consider, now, the last family of helical waves, denoted L in figures 5 and 7, and
which are best seen in the close-up view of figure 6. The complete cartography of these
waves was particularly tedious and challenging. It required, as a numerical ‘trick’, the
extensive use of a complex mapping function, which is presented in Appendix B.

5.4.1. Description for Re= 1000

Figure 14 represents the structure of the eigenmode belonging to the first L1
branch, for several value of the wavenumber k. Figure 14(a) corresponds to the
particular value k = 2.262, for which the mode is a stationary wave. As can be seen,
this wave consists of two overlapping vorticity dipoles. However, contrary to the C
mode displayed in figure 10(b), the outer dipole is located on the external parts of
the vortex, not entirely within the core.

The stationary nature of this particular wave can be understood as resulting from a
competition between the inner and outer dipoles. The outer dipole results in a mean
displacement of the vortex centreline which would, alone, lead to a countergrade wave
through the mechanism described in § 5.1.2. On the other hand, The inner dipole
would, alone, lead to a cograde wave through the mechanism described in § 5.2.2.
An equilibrium between these two effects is reached for the particular wavenumber
k = 2.262. For larger wavenumbers, the wave becomes countergrade due to a larger
influence of the outer dipole, while for smaller wavenumbers, the wave becomes
retrograde due to a larger influence of the inner one.

The evolution of the structure of the eigenmode as the wavenumber is decreased
from 2.262 to 0 is very interesting, and is detailed in the next plots. At first, in the
range 1.2 � k < 2.262, the mode becomes retrograde, but its structure remains that
of a regular Kelvin wave, similar to that displayed in figure 14(a). Then, for lower
values of the wavenumber, dramatic modifications of the eigenmode structure are
observed and are illustrated in figure 14(b–d).

For k = 1 (figure 14b) one observes the appearance of two spiral arms located in an
annular region located outside the vortex core, around r ≈ 2.5. As the wavenumber
is further decreased, this spiral structure progressively acquires a greater importance.
For k = 0.8 (figure 14c), the spiral arms are observed to wind more than one turn,
and the vorticity level within the arms is comparable to those in the inner dipole.
This kind of perturbation, characterized by the simultaneous presence of a wave-like
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Figure 14. Structure of the eigenmode on the first L1 branch, for m= 1, Re= 1000, and
various values of k. (a) k =2.262, ω,= −0.0119i; (b) k = 1, ω = 0.1480, −0.0216i; (c) k = 0.8,
ω =0.1560 − 0.0433i; (d) k = 0.5, ω = 0.1439 − 0.0900i. Same conventions as in figure 8.

component and a spiral component, is called a critical layer wave, and will be
particularly considered in the next subsections.

When the wavenumber is decreased further, the spiral component acquires a greater
importance, and eventually dominates the wave component. For example, for k = 0.5
(figure 14d), nearly three spiral turns are observed, and the wave component cannot
be distinguished. In that case, the mode should no longer be called a Kelvin wave, and
becomes a truely singular mode. Note that the value k =0.8 corresponds approximatily
to the case where the oscillation rate ωr is maximum. Therefore, the observed change
of eigenmode structure is associated with a change of behaviour of the branch:
from left-propagating (with negative ∂ωr/∂k) for k > 0.8, the branch becomes right-
propagating (with positive ∂ωr/∂k) for k < 0.8.

Figure 15 displays two other examples of the L family. Figure 15(a) corresponds to
an eigenmode belonging to the second L1 branch, for the value of the wavenumber
k = 3.975 where this wave is stationary. As can be observed, the structure consists of
three overlapping dipoles. As for the first branch, when the wavenumber is decreased,
the structure first remains essentially unchanged (down to k ≈ 2.6). Then, the mode
becomes of the critical layer wave type, with the coexistence of a wave component
and a spiral structure (down to k ≈ 1.4), and finally for even smaller wavenumbers
the mode becomes a true singular mode while its direction of propagation is reversed.
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Figure 15. Structure of two L eigenmodes: (a) k = 3.975, ω = −0.0368i, a mode belonging to
the second ‘L1’ branch, (b) k =5, ω = 0.04602 − 0.07861i, a mode belonging to the ‘L2’ family.
Same conventions as in figure 8, except that in (b) only four iso-levels are dislayed.

The eigenmodes computed on the higher branches of L1 waves follow the same
trends.

Finally, the mode displayed in figure 15(b) belongs to the family of branches identi-
fied as L2 in figure 6. This kind of mode looks like the singular modes found on the L1
branches for long wavelengths, as displayed in figure 14(d). However, the spiral struc-
ture is much more developed, and is located farther from the vortex core. Contrary to
the L1 ones, the modes of the L2 branches remain truly singular for all wavenumbers.

5.4.2. The critical layer waves: physical significance

The spiral structure described above is the signature of a viscous critical layer.
The critical layer phenomenon occurs in the vicinity of critical points rc (which may
eventually be complex) where the wave is resonant with the mean flow, i.e. where the
velocity of the mean flow equals the phase velocity of the wave:

mΩ(rc) = ω. (5.1)

Because of this resonance, an exchange of energy between the mean flow and the
wave is possible, and generally leads to a damping of the wave.

In the vortex literature, the critical layer problem has mainly been investigated in
the inviscid, two-dimensional case (Briggs, Daugherty & Levy 1970; Schecter et al.
2000), and we begin with a brief review of these studies. In this case, critical layers
lead to the existence of damped wave-like perturbations called ‘quasi-modes’. Such a
perturbation initially behaves as a weakly damped wave located within the vortex.
However, at late time, it progressively develops a ‘skirt’ located in the periphery
of the vortex core, where vorticity is continuously wound into a tight spiral, which
‘pumps’ the energy of the wave and causes its damping. Mathematically, the skirt
corresponds to the contribution from the inviscid continuous spectrum (distinct from
the viscous continuous spectrum considered in Appendix A). The frequencies of the
quasi-modes correspond to the so-called ‘Landau poles’ whose computation requires
a complex contour deformation procedure (see Appendix C where such a calculation
is performed). Briggs et al. (1970) showed that a condition for waves possessing a
critical level to be damped is for the real part of the gradient of the base-flow vorticity
at the critical level to be negative, i.e.

Re
[
Ξ ′(rc)

]
< 0. (5.2)
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Figure 16. The effect of Reynolds number variation on the structure of a ‘L’ wave (for m= 1
and k = 1). (a) Re= 3000, ω = 0.1515 − 0.0219i; (b) Re= 5000, ω = 0.1522 − 0.0220i. Same
conventions as in figure 8.

Note that this condition was initially established under more severe hypotheses than
in the case we are considering here (the base flow must be close to the Rankine model
and the perturbation two-dimensional).

Schecter et al. (2000) gave a physical explanation of the condition (5.2), based on
the conservation of total angular momentum (see Appendix A of their paper). First,
they decompose the angular momentum into a (constant) contribution from the base
flow, a contribution from the ‘wave’, proportional to the square of its amplitude,
and a contribution from the skirt. Then, they are able to show that phase mixing of
vorticity leads to an increase of the angular momentum contained within the ‘skirt’,
as soon as the condition (5.2) holds. So, the only way for the system to conserve total
angular momentum is for the ‘wave’ amplitude to decay.

Despite their different mathematical nature, the viscous critical layer modes and
the inviscid quasi-modes describe the same physical reality: the coupling between
the intrinsic dynamics of a vortex core and the winding of perturbations located in
its periphery. The difference between the two kinds of perturbations is that in the
inviscid case, the winding never reaches an asymptotic state, and the narrowing of
the spiral arms occurs indefinitely. On the other hand, in the presence of viscosity,
the narrowing of the spiral arms leads to an increase of the radial gradients which
enhance the dissipation. Thus, the winding does not occur endlessly, but up to a time
when dissipation becomes non-negligible. According to this explanation, the ‘skirt’ of
spiral arms of the quasi-modes and the spiral region of the critical layer waves play
the same role. The difference is that in the first case, the energy lost by the wave is
transferred into the skirt region where it results in an increase of the mean angular
momentum, whereas in the second case, it is dissipated through the effect of viscosity.

Following this explanation, for a given mode, the higher the Reynolds number, the
narrower the spiral arms have to be to provide the right amount of dissipation. This
prediction is checked in figure 16, which shows the effect of Reynolds number variation
on the eigenmode already displayed in figure 14(b). As can be seen when comparing
these plots, when the Reynolds number is raised from 1000 to 5000, the only noticeable
change in the eigenmode structure is the predicted narrowing of the spiral arms.

Note, finally, that for the Lamb–Oseen vortex, all retrograde modes possess a
critical point satisfying the condition (5.2), and should therefore be damped through
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Figure 17. Oscillation rates (a) and damping rates (b) of modes computed in the viscous and
inviscid cases. Thick grey lines: viscous results for Re= 104. Thin black lines: inviscid results
obtained using the complex contour deformation procedure (selected branches from figure 27).

the mechanism described above. However, as noted in the previous section, critical
layer waves, characterized by the coexistence of a wave component and a spiral
structure, are only observed on each L1 branch in a narrow range of wavenumbers,
which is bounded from above by the point where the oscillation frequency is about
ωr ≈ 0.12 (i.e. k ≈ 1.2 for the first L1 branch, k ≈ 2.6 for the second branch, etc.),
and from below by the point where the direction of propagation of the mode reverses
(i.e. k ≈ 0.8 for the first L1 branch, k ≈ 1.4 for the second branch, etc.). Above this
range, the modes are regular waves, and below the modes only possess the spiral
component. Incidentally, in their inviscid asymptotic study, Le Dizès & Lacaze (2005)
report the occurrence of a bifurcation in the mathematical structure of the modes for
ω =0.1267. However, a physical argument explaining why this transition occurs for
this precise value is missing.

5.4.3. The large Reynolds number limit

It is important to understand that, although dissipation is eventually achieved
through the effect of viscosity within the spiral region, the mechanism responsible
for the damping of the critical layer waves is essentially inviscid. Accordingly, the
frequencies (and damping rates) of these waves are expected to match, as the Reynolds
number tends to infinity, with those of the ‘inviscid singular modes’ computed using
a contour deformation procedure.

A family of such waves has been computed by Sipp & Jacquin (2003), and their
asymptotic properties have been explored by le Dizès & Lacaze (2005). This family
will be called here ‘inviscid singular modes of the first kind’. With extensive use of
the contour deformation procedure, we have discovered at least two other families,
which are called inviscid singular modes of the second kind and of the third kind.
The reader will find in Appendix C a mapping of these new modes (figure 27), and
a few arguments justifying their occurrence. The object of this section is simply to
compare the frequencies of these inviscid singular modes with those of the L modes
computed in the viscous case.

Figure 17 compares the real and imaginary parts of the frequencies of the modes
computed in the viscous (with Re =104) and inviscid cases. As can be observed, at
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Re ω (ω − ω(0)) × Re

103 0.14803556–0.02167704i –5.2096+0.3904i
104 0.15272368–0.02200868i –5.2155+0.5875i
105 0.15319309–0.02206135i –5.2139+0.6083i

Table 1. Illustration of the asymptotic behaviour of the frequency with large Reynolds
numbers, for a critical layer wave with m= 1, k = 1. The inviscid limit, computed using the
contour deformation procedure, is ω(0) = 0.15324523−0.02067435i.

least nine viscous branches, belonging to the subset L1, match with inviscid branches
of the first kind. Three viscous branches of the subset L2 match with inviscid branches
of the second kind, and one with an inviscid branch of the third kind.

The way the inviscid limit is approached remains to be described in detail. The
simplest guess is to assume that the frequency ω follows a development in powers
of Re−1, with the form given by equation (3.1). If the frequency is to follow such
a development, then the quantity (ω − ω(0)) × Re, where ω(0) is the inviscid limit,
should asymptote to a finite limit as Re → ∞. This prediction is checked in table 1,
which displays this quantity computed for the L eigenmode already considered in
figures 14(b) and 16. These results confirm the prediction, and give the approximate
value of the second term in the development: ω(1) ≈ −5.21 +0.61i.

Note, finally, that in figure 27 the viscous results depart from the inviscid ones
in the long-wave range. Inspection shows that in this case, the frequencies evolve in
powers of Re−1/2 instead of Re−1, just as for the C waves. This limit has not been
investigated further.

5.4.4. Structure of the modes in the complex r-plane

We have observed in the previous section that the frequencies of the critical layer
waves evolve in powers of Re−1, with the form given by equation (3.1). However these
modes are not regular Kelvin waves in the usual sense, because the corresponding
eigenmodes u(r) do not admit a regular development with the form (3.2) – at least
for real values of r .

In such cases, a better description may be obtained when considering the eigenmode
structure u(r) as a function of the complex variable r , obtained through analytic
continuation. In that case, it is known that the regular development for the eigenmode
structure is invalid in some viscous sectors where the solution is viscous at leading
order (Drazin & Reid 1981). This property was initially demonstrated in the case of
plane parallel flows by Lin (1955). A rigorous demonstration that this property also
holds for swirling flows was obtained recently by Le Dizès (2004). Most specifically,
he showed that the eigenmode structure is strongly oscillating in at least one of the
sectors delimitated by the Stokes lines originating from the critical points rc, and
defined by

arg(r − rc) = π/2 + 2nπ/3 − α, with α = arg(−Ω ′(rc))/3. (5.3)

Let us check these predictions for the case of the eigenmode corresponding to
m =1, k =1, already displayed in figures 14(b) and 16. For this case, the leading-
order frequency, computed using the inviscid equations and the complex contour
deformation procedure, is ω = 0.1532 − 0.02207i, and the corresponding critical point
is rc = 2.5335 + 0.1832i. The Stokes lines are given by equation (5.3), with α = −
0.06914 ≡ −3.96◦.
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Figure 18. Structure of a critical layer wave in the complex r-plane, for m= 1 and k = 1.
(a) Re= 1000; (b) Re= 2000. Curves are iso-levels of the modulus (logarithmically spaced),
and grey levels indicate the phase, from pure real (dark grey) to pure imaginary (white). The
thick straight lines correspond to the theoretical Stokes lines according to Le Dizès (2004).

Figure 18 displays the eigencomponent p(r) in a strip of the complex r-plane
surrounding the real axis†. Figure 18(a) is for Re = 1000, and 18(b) is for Re = 2000.
Curves are iso-levels of the modulus, and grey levels indicate the phase, from pure real
(dark grey) to pure imaginary (white). The three thick straight lines are the predicted
Stokes lines. As can be observed, in the two upper Stokes sectors, the eigenmode
structure is smooth and not affected by variations of the Reynolds number. On the
other hand, in the third sector, the solution is highly oscillatory, and the number of
oscillations increases with the Reynolds number. It can be observed, finally, that the
zeros of the complex function p(r) tend to align along the two lower Stokes lines.
This property is generic to the generalized Airy functions with a balanced/dominant
behaviour (Drazin & Reid 1981).

The representation given in figure 18 may help in understanding the occurrence of
the spiral region from a mathematical point of view: this spiral region is simply the
intersection of the viscous sector with the real r-axis. Moreover, this representation
gives a formal justification for the contour deformation procedure used in the inviscid
case, and for the complex mapping method used in the viscous case. In effect, to

† The procedure used to draw these plots takes advantage of the properties of the Chebyschev
collocation method. In effect, when using such a method, the eigenmodes are implicitly known in
terms of a polynomial expansion of the mapped variable ξ . This polynomial is readily evaluated
for complex values of ξ , which correspond to complex values of r through the mapping function.
Note that this procedure differs from that described in Appendix B to design a complex mapping
function. Here, the real mapping function defined by equation (B 1) is used, and so the inversion of
the eigenvalue problem initially provides the solution for real r . The evaluation of the polynomials
for complex arguments is done afterwards.
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be precise the idea of these methods is to solve the stability equations along a path
which avoids the viscous sectors.

6. Double-helix modes (m =2) and higher azimuthal wavenumbers
Figure 19 displays the frequencies of left-handed double-helix (m =2) modes

computed for Re =1000 (with the same conventions as in figures 2 and 5). Three
families of branches can be distinguished, and are labelled C, V and L because of their
similarities with the corresponding families for m =1. Note that a main difference
with the m =1 case is the absence of countergrade modes. In particular, the D branch
is absent, and the L waves remain retrograde for all values of k. Figure 20 shows a
close-up view of the L family for the range 0 < ωr < 0.5. This family can be further
decomposed into two subsets, called L1 and L2. One branch of the L1 family is
labelled F and will be particularly considered in the following.

A comparison with the case of a Rankine vortex leads to the same conclusions
as for m =1. In particular, the largest differences are found in the retrograde range,
where all the modes become more or less damped.
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Figure 21. Structure of some double-helix eigenmodes (Re= 1000). (a) C mode with k = 5, ω =
2.703 − 0.0996i; (b) C mode with k = 0.1, ω = 1.8702 − 0.1305i; (c) V mode with k = 1, ω =
1.6648 − 0.2339i; (d) L mode with k =5, ω = 0.4077 − 0.0730i; (e) F mode with k = 3.45, ω =
0.3608−0.0173i; (f ) F mode with k = 1, ω =0.4203−0.0921i. Same conventions as in figure 8.

6.1. The core waves (family C) for m =2

The branches of the C family display the same trends as their m =1 counterparts: they
are right-propagating and generally cograde (ωr > 2), except in the long-wave range
where they become retrograde (0 < ωr < 2). An example of an eigenmode belonging
to this family is depicted in figure 21(a). This eigenmode has some resemblance
with its m =1 counterpart displayed in figure 12(a). It can be described as a vorticity
quadripole located entirely within the vortex core. The waves on the other C branches
have a similar structure, with an increasing number of overlapping quadripoles, but
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their structure always remain concentrated within the vortex core. Consequently, just
as for m =1, these waves can be identified as core waves. The cograde nature of these
waves can be explained with the same physical arguments as those given for m =1 in
figure 12, except that the geometry is slightly different.

Inspection of the effect of viscosity on these C waves leads to the same conclusions
as for m =1. On each branch, the damping rate reaches a minimum for a finite
value of the wavenumber. For example, for the first (and least damped) branch,
the minimum occurs for k = 2.7, and corresponds to ω = 2.3690 − 0.0822i. Note that
these waves are always substantially more damped than their m =1 counterparts
(recall that the minimum damping rate for helical C waves is −0.0331). Finally, in
the long-wave limit, the present waves also display a centre-mode behaviour. For
example, figure 21(b) displays the eigenmode computed on the same branch as that
in figure 12(b), but for k =0.1. One can recognize the characteristic centre-mode
structure already described in figure 12(c) for m = 1.

6.2. The viscous modes (family V) for m =2

A second family is recognized as the equivalent of the V modes described for
m =1. These modes are always countergrade and become strongly damped as the
wavenumber is increased. An example of this family is displayed in figure 21(c).
One sees the typical spiral structure already described for their m =1 counterparts
(compare with figure 13b). The difference is, of course, that the present ones consist
of four spiral arms, instead of two arms for m =1.

6.3. The L branches for m =2

The third family is related to the L modes described for m =1. The frequencies of these
modes are best depicted in the close-up view of figure 20. Note that the grey-scale is
different to that used in the previous figures. Accordingly, most of these modes are
much more damped than their m =1 counterparts. Figure 21(d) displays an example
of an eigenmode belonging to that family. The structure of this mode is clearly of the
critical layer wave type, with the coexistence of a quadripolar wave component within
the vortex core, and of a spiral structure located outside of the vortex core. As for
m =1, the coexistence of both the core wave component and the critical layer only
occurs in a limited range of k. The mode corresponding to figure 21(d) loses the spiral
structure and becomes a regular wave for k ≈ 8, which corresponds approximately
to ω ≈ 0.39. On the other hand, it loses the wave component and becomes a true
singular mode for k ≈ 3, which corresponds to the maximum value of ωr for this
mode. The modes on the higher branches seem to display the same trends, and are of
the critical layer wave type for ωr between 0.39 and their maximum value. There is
no physical argument explaining these boundaries, but incidentally, as for m =1, the
value ω = 0.3871 corresponds to a bifurcation in the mathematical structure of the
modes according to the inviscid asymptotic study of Le Dizès & Lacaze (2005).

The large Reynolds number limit of the L modes for m =2 has been investigated
in the same way as in § 5.4.3 for m =1. Here again, the frequencies are expected
to match, at leading order, with those of ‘inviscid singular modes’ computed using
a contour deformation procedure. A mapping of these inviscid singular modes is
presented in Appendix C (figure 28). As for m =1, in addition to the first kind of
waves already computed by Sipp & Jacquin (2003), some new kinds of waves were
discovered. Figure 22 compares the real and imaginary parts of the frequencies of the
modes computed in the viscous (with Re =104) and inviscid cases. As can be seen, at
least 8 inviscid branches are effectively approached by the viscous results. Note that
the inviscid results display a complicated behaviour which was partially explained
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the viscous and inviscid cases. Thick grey lines: viscous results for Re= 104. Thin black lines:
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by le Dizès & Lacaze (2005). The viscous results look comparatively more regular,
and some kind of mode switching seems to occur (i.e. some viscous branches seem to
‘jump’ from one inviscid limit to another).

6.4. The F branch

6.4.1. Description

We have left till the end the description of the particular branch called F in
figure 20. For Re = 1000, this mode is the least damped of all the m =2 modes.
The minimum damping rate occurs for k = 3.45, and the corresponding frequency is
ω =0.3608 − 0.0173i. The corresponding eigenmode is displayed in figure 21(e). This
eigenmode takes the form of a quadripole of vorticity which is not confined within
the vortex core, but also extends to the outer parts of the vortex. This structure is
the simplest of all m =2 modes and has a clear geometrical interpretation. In effect,
when superimposed onto the base flow, the effect of this quadripole is to increase
the base-flow vorticity along one direction (the horizontal direction in figure 21e),
and to decrease it in the perpendicular direction (the vertical direction in figure 21e).
Therefore, the net effect of this wave is to deform the vortex core in an elliptical way.
This justifies the description of this wave as a flattening wave.

For wavenumbers larger than k = 3.45, this mode remains a regular weakly damped
wave. On the other hand, for lower values of k, the structure changes dramatically. This
is illustrated in figure 21(f ), for k =1. In that case, one recognizes the now familiar
structure of a critical layer wave. For even smaller wavenumbers, the damping rate
increases substantially, and for k = 0, this mode becomes a highly damped one, with
ω =0.4402 − 0.1588i.

6.4.2. Physical mechanism

The F branch described here has an equivalent in the Rankine vortex, which is
called the ‘isolated branch’ by Eloy & Le Dizès (2001) and Fukumoto (2003), and
whose angular velocity ω/m varies between 1/2 (for k = 0) and 0 (for k → ∞).

A physical argument has been proposed by Arendt et al. (1997) to explain the
properties of this wave. This argument is presented in figure 23. Let us consider
a Rankine vortex, with radius a, rotation rate Ω0, and circulation Γ0 = 2πΩ0a

2,
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Figure 23. The physical mechanism explaining the properties of the F wave, according to
Arendt et al. (1997). See explanations in text.

deformed by a ‘flattening wave’ of wavenumber k, as shown in figure 23(a). Arendt
et al. (1997) argued that this deformed vortex can be modelled as a pair of vortex
filaments wrapped around each other in a helical way, located at a distance a from
each other, each of them bearing a circulation Γ ′ = Γ0/2 (figure 23b).

Let us first consider the two-dimensionnal situation (figure 23c). In this case,
each filament is advected by a velocity induced by the other one, of amplitude
Γ ′/(2πa) = Ω0a/2. For example, the plot shows with arrows the velocity induced by
the dark filament on the light one. Therefore, the pair rotates in the positive direction
with an angular frequency Ω0/2, which is precisely the expected angular frequency
for the wave.

In the three-dimensionnal case, in addition to the velocity induced by the other one,
each filament is advected by its self-induced velocity. This second effect is sketched in
figure 23(d). Each filament is displaced in a helical way, and we recognize in this form
the presence of a displacement wave. As we know from § 5.1, the velocity induced
by these displacement waves would, alone, make the filaments rotate in the negative
direction. For example, the plot shows with white arrows the velocity induced by
the dark filament on itself. Therefore, the self-induction opposes to the effect of the
mutual induction. As a result, in the three-dimensional case, the angular frequency of
the wave is lower than Ω0/2. Moreover, in the short-wave limit, both effect cancel,
and the angular frequency tends to zero.

With the results presented in the previous section in mind, we must admit that the
scenario presented above, although very seducing and quite accurate for the Rankine
vortex, is only partially valid for more realistic vortices such as the Lamb–Oseen
vortex. This scenario only remains accurate in the short-wave range, where the F
wave effectively reduces to a simple flattening of the vortex. On the other hand, in
the long-wave range, the F mode cannot be identified anymore as a flattening wave.
For instance, in the two-dimensional limit, the mode is a highly damped one with



Kelvin waves and the singular modes of the Lamb–Oseen vortex 265

(C)

(V)

(L)

k

ωr

0 2 4 6 8 10

1

2

3

4

–ωi
>0.8
0.72
0.64
0.56
0.48
0.4
0.32
0.24
0.16
0.08
0

Figure 24. Frequencies of the triple-helix (m = 3) eigenmodes, for Re = 1000.

frequency ω = 0.4402 − 0.1588i, a value which substantially differs from the value
ω =1 predicted above. In that case, the underlying physical mechanism is completely
different, and must include the coupling between the intrinsic dynamics of the vortex
core and the winding of perturbations located in its periphery.

Due to these differences, it can be expected that for a Lamb–Oseen vortex the
evolution of an initially localized elliptic deformation of weak amplitude will be
completely different than in the case of a Rankine vortex considered by Arendt
et al. (1997). This point is fully confirmed by a study of the initial value problem
(Fabre 2002). Note, however, that these conclusions only hold in the linear regime.
For perturbations of sufficiently large amplitude, nonlinearities could change the
properties of the critical layer and lead to the existence of a ‘true’ flattening wave for
all wavenumbers.

6.5. Triple-helix modes (m = 3) and higher azimuthal wavenumbers

Finally, our survey of the Kelvin waves and viscous modes of the Lamb–Oseen vortex
would not be complete if we stopped at the double-helix (m= 2) case, and we should
also discuss the higher azimuthal wavenumbers. Figure 24 displays the frequencies
of the modes with a triple-helix (m = 3) geometry. Three families of branches can be
found, denoted again C, V and L. In the short-wave limit, the frequencies of all the L
modes tend to ωr ≈ 1, a property that was predicted in the large-k inviscid asymptotic
analysis of Le Dizès & Lacaze (2005). Note that the greyscale is different to that used
in the previous cases. Accordingly, the m =3 modes are much more damped than
those with lower m. For Re= 1000, the least-damped wave occurs on a C branch for
k = 3.6, and its frequency is ω = 3.2958 − 0.1537i. The least damped L wave occurs
for k = 8.78 and corresponds to ω = 0.9887 − 0.2349i. The next cases (m � 4) display
the same tendencies, with all the modes getting more and more damped. Finally, an
equivalent of the F branch described for m =2 does not seem to exist for m � 3.

7. Summary and conclusions
The goal of this study was to describe the normal modes existing on a ‘realistic’

vortex, the Lamb–Oseen model, and to compare the results with the more academic
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case of a Rankine vortex, initially considered by Lord Kelvin (1880), and still used
in most studies on vortex dynamics. The complete mapping of all the normal modes
turned out to be a numerical challenge, and required, among other numerical tricks,
the extensive use of a complex mapping function. Several qualitative differences were
found. The most important one is that in addition to regular waves, the Lamb–Oseen
vortex also possesses singular viscous modes which are always significantly damped,
even in the limit of vanishing viscosity. Another important conclusion is that no
amplified modes were found, a result which demonstrates the stability of the Lamb–
Oseen vortex. This conclusion may seem obvious. However, the effect of viscosity on
swirling flows is highly non-trivial, and viscous instabilities were recently discovered
in other kind of vortices which were generally considered as stable (Fabre & Jacquin
2004).

To conclude this paper, we would like to review, once again, the different families
of modes, and to comment on their physical relevance to the dynamics of realistic
vortices.

The ‘Kelvin waves’ can be classified into three groups. The first group comprises the
axisymmetric waves, the helical displacement wave, and to a lesser extent, the waves
found on the L1 and F branches in the range of short wavelengths where they are not
affected by the critical layer phenemenon. The waves of this group share a number
of similarities. First, they have a direct counterpart in the case of the Rankine vortex.
Secondly, they are weakly affected by viscosity, in the sense that they admit a regular
development in the limit of large Reynolds number. Third, they have a clear physical
mechanism, which can be explained without reference to the precise vortex model.
Fourth, and perhaps the most important point, they have all been observed to occur
in realistic vortex flows. For example, in their numerical simulation of a turbulent
flow resulting from the breaking of an internal gravity wave, Fritts, Arendt &
Andreassen (1998) identified characteristic event which can be interpreted as the
propagation of axisymmetric, helical and flattening waves. This kind of event seems
to play a major role in the energy cascade towards smaller scales in turbulent flows.
The physical significance of all these waves is clear: they are responsible for the
propagation of disturbances and kinetic energy along a vortex tube.

The second group is formed by the core waves (C branches). These waves fulfil
the two first properties listed above: they are qualitatively similar to waves existing
in the Rankine vortex and are regular with respect viscosity (although their damping
rates are generally higher than for the first group of waves listed above). However,
the physical significance of these waves is less clear. In particular, they do not seem
to have ever been observed in realistic vortex flows. The reason may be that their
structure is located entirely within the vortex core. So, these waves may be present in
vortex cores and participate to the propagation of energy, but may be in some way
invisible from the outside of the vortex.

The third group is formed by the critical layer waves, which are found on each
of the L1 branches in a narrow range of wavenumbers (limited, from above, by the
wavenumber corresponding to ωr ≈ 0.12 for m =1, and ωr ≈ 0.39 for m =2, and
from below by the wavenumber for which the group velocity changes its sign), and
on the F branch for long wavelengths. These waves have no counterparts in the
case of the Rankine vortex, and the effect of viscosity on them is highly non-trivial.
Due to their particular structure, these waves allow, in some way, a ‘communication’
between the vortex core and the regions located outside the core. Consequently, they
are physically significant in all situations where a transfer of energy occurs between
the vortex core and its surroundings. Such a transfer takes place in a ‘quasi-mode’, a
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particular perturbation which initially behaves as a Kelvin wave in the vortex core,
but progressively transfers its energy to an annular external region where a resonance
occurs. The relevance of critical layer waves to this mechanism has been pointed out.
The opposite situation occurs in the interaction of a vortex with an external turbulent
field, where an external perturbation can transfer its energy into the inner core. This
was recently demonstrated in the optimal perturbation analysis of Antkowiak &
Brancher (2004), who observed that the largest transient energy growths occur
precisely in the ranges of wavenumbers corresponding to critical layer waves.

Aside from these three groups of Kelvin waves, we have also found that the Lamb–
Oseen vortex possesses viscous singular modes of a completely different nature.
Mathematically, these modes can be classified into ‘inviscid singular modes’, when
their frequency admits a regular limit as Re → ∞ (L2 modes for all wavelengths,
and L1 modes for long wavelengths), and ‘viscous singular modes’ when they do
not behave in this way (V modes, and centre modes in the long-wave limit of the
C branches). All these modes are substantially more damped than the waves listed
above, and therefore, they are not expected to play any important physical role when
considered individually.

Although the tracking of damped modes proved to be an endless task, we can
reasonably claim that the cartography presented here is exhaustive. However, there
are necessarily open issues, and this work may be followed in several directions.

First, our study was restricted to long and medium wavelengths. The short-
wavelength regime was investigated by Le Dizès & Lacaze (2005) using asymptotic
methods, but only in the inviscid case. The effect of viscosity in this range is also a
matter of interest.

Secondly, we restricted our study to a modal theory. This approach is limited in
two ways. First, it does not allow description of perturbations which are localized in
space, and secondly, it does not account for transient effects. The first direction was
explored by Fabre (2002) through a computation of the linear initial value problem.
This study shows that generally, part of the energy propagates along the vortex in the
form of wave packets, while another part of the energy is rapidly dissipated through
a filamentation of vorticity. The second direction was investigated by Antkowiak
& Brancher (2004) using an optimal perturbation analysis. This study shows that
very large transient amplifications can be reached for perturbations initially located
outside the vortex core. The present cartography of eigenmodes gives hints on how
to interpret the results of both studies.

Third, the study was restricted to the discrete eigenmodes. However, these discrete
eigenmodes do not form a complete basis to represent an arbitrary perturbation.
Another class of modes, called continuum modes, has to be included. The existence
of these modes, which form the continuous spectrum of the vortex, was only briefly
evoked. The mathematical description of this continuous spectrum remains an open
issue (see Appendix A) and its physical significance also remains to be studied. It
may play a fundamental role in the transient behaviour of vortices.

Finally, the effect of nonlinearities on Kelvin waves remains an open question. This
point is particularly interesting for the case of critical layer waves. In the case of
parallel flows, it is known that nonlinear effects within a critical layer can completely
change the properties of the waves, and lead to the formation of undamped, nonlinear
waves. Le Dizès (2000) recently used this idea to construct nonlinear oscillation modes
of a two-dimensional vortex, which take the form of tripolar vortices. The extension
of this idea to the three-dimensional case is challenging. It may lead to the discovery
of a new family of non-damped nonlinear retrograde waves.
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Appendix A. The continuous spectrum
The objective of this paper is to describe the Kelvin waves, which form the discrete

spectrum of a vortex. However the existence of a continuous spectrum was briefly
evoked in § 4, and its location in the complex ω-plane was described in figure 7. This
continuous spectrum is the equivalent of the one initially described by Grosch &
Salwen (1978) in unbounded viscous shear flows. In this Appendix we briefly discuss
the significance of this continuous spectrum, and give an argument indicating that it
is located along the negative imaginary axis in the complex ω-plane.

The values of ω in the continuous spectrum do not correspond to regular
eigenmodes. However, they can be associated with a class of generalized eigenmodes,
which are solutions of the stability equations in a weak sense: they satisfy the
differential equations and the limit conditions, but they are not square-integrable. They
are not acceptable as solutions to the stability problem when considered individually,
and only an integral collection of these can be given a physical sense.

Such generalized eigenmodes may be constructed by solving the stability equations
as a shooting problem, just as in the pioneering study of Lessen & Paillet (1974). The
viscous equations being of order six, six independent solutions can be constructed and
have to be matched with the imposition of limit conditions. When considering the
asymptotic behaviour as r → ∞, it is found that these independent solutions behave
respectively as r−1/2ekr , r−1/2e−kr , r−1/2eβr (twice) and r−1/2e−βr (twice), with β2 = k2 −
iωRe (Lessen & Paillet 1974). Among these solutions, three of them generally grow
exponentially and have to be removed. This provides three conditions to be imposed
on the eigensolutions. Three other conditions arising from the limit conditions at
r = 0, one is led to a well-posed eigenvalue problem allowing computation of the
discrete eigenmodes. However, a degeneracy occurs as soon as β2 is real and negative.
In this case, only one out of the six solutions grows exponentially and can be
removed. Perturbations containing the five other solutions can always be constructed,
and these perturbations turn out to be not square-integrable. This is precisely the
expected behaviour for modes belonging to the continuous spectrum. Accordingly,
the condition β2 < 0 indicates a possible location of the continous spectum in the
complex ω-plane: ωr = 0, ωi < −k2/Re.

The argument presented here should, however, be considered as preliminary. Clearly
additional work is required to describe more precisely this continuous spectrum, and
to investigate its contribution to the dynamics of the vortex.

Appendix B. The complex mapping function
When using a complex collocation method, the stability equations are not directly

solved in terms of the physical variable r , but are first mapped to a reduced variable
ξ ∈ [−1, 1] through a mapping function. The choice of the mapping function is crucial
for the performance of the method, and different functions have been proposed and
discussed (Canuto et al. 1988; Khorrami, Malik & Ash 1989).

Here, two mapping functions have been used. The first one is the algebraic mapping
introduced by Fabre & Jacquin (2004b):

r =
Hξ

1 − ξ 2
. (B 1)
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Figure 25. Numerical spectrum in the complex ω-plane for m= 1, k = 3,Re =1000, computed
using (a) a real mapping function, and (b) a complex mapping function. The diamond symbols
and the dots indicate, respectively, the converged and spurious eigenmodes.

This function depends upon a single parameter H which controls the spreading of
the collocation points. The second one is a complex mapping, defined as follows:

r =
Hξ

1 − ξ 2
+ i

Aξ√
1 − ξ 2

, (B 2)

with H = 2.217792, A= 2.139777.
Other choices of function could have been used, and several were tested. The

mapping function given by equation (B 2) proved to be the most successful, and some
of the reasons for this success will be explained below.

Let us compare the efficiency of these mappings, for the choice of parameters m =
1, k = 3, Re= 1000. This case has already been considered in § 5, and the corresponding
theoretical spectrum has been displayed in figure 7. As recalled in Appendix A, the
theoretical spectrum contains both a set of discrete eigenvalues, which correspond to
the Kelvin waves, and a continuous spectrum, which takes the form of a branch cut
located along the imaginary axis.

Figure 25(a) displays the spectrum computed with the real mapping (B 1). This
numerical spectrum contains both physical and spurious eigenvalues. The physical ei-
genvalues, displayed by diamond symbols do not depend upon the discretization para-
meters, and are sorted using a suitably defined convergence criterion (see Fabre &
Jacquin 2004b). The spurious eigenvalues, displayed by dots, form a ‘curtain’ which
roughly occupies the position of the continuous spectrum. (The same phenomenon
occurs in the eigenspectra of plane shear flow; see Schmid & Henningson 2002,
p. 67.) When comparing this spectrum with the exact result, it is found that the
eigenvalues corresponding to the C, V and D families are correctly resolved. On
the other hand, only four eigenvalues of the L family can be computed efficiently.
The other expected eigenvalues are somehow hidden behind the ‘curtain’ of spurious
eigenvalues. Increasing the number of collocation points slightly displaces the ‘curtain’
and reveals a few additional eigenvalues. However, when using a real mapping, the
problem can never be completely fixed.

Figure 25(b) displays the same spectrum computed with the complex mapping (B 2).
The change is spectacular: the ‘curtain’ of spurious eigenmodes is displaced to the
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Figure 26. (a) “Integration paths” in the complex r-plane, corresponding to the complex
mapping function (B 2) (full line) and to the real mapping function (B 1) (dashed line). The
thick lines represent the Stokes lines bounding the viscous sectors (for a particular mode
defined in the text), and the diamond symbol corresponds to the point r = 2.2178 + 1.6822i.
(b) Traces in the complex ω-plane of the complex mapping function (B 2) (full line) and of the
real mapping function (dashed line).

left, with the effect to ‘uncover’ new eigenvalues which were hidden behind it. At least
seven eigenvalues of each of the L, V and C families are thus discovered.

Note, however, that among the newly uncovered modes, we have only retained
those located in right half of the complex plane ωr > 0. In effect, the continuous
spectrum, which we assume to lie along the imaginary axis, introduces a cut in the
complex plane, and we cannot assess whether modes located at the left side of this
cut belong to the ‘good sheet’ of the complex plane or not. (Anyway, these discarded
modes are always substantially damped.)

Let us now explain briefly how the complex mapping works. A mapping can be
thought of as an ‘integration path’ in the complex r-plane where the differential
equations of the stability problem are solved. Figure 26(a) displays, in the complex
r-plane, the integration paths of our real and complex mappings, as well as the typical
structure of an L-mode. The chosen mode is the one depicted in figure 14(d): k = 0.5,
ω = 0.1439 − 0.0900i. The corresponding two first critical points are given by Sipp &
Jacquin (2003), and the Stokes lines are drawn according to Le Dizès (2004). The
integration path of the real mapping (dashed line) lies on the real axis, and intersects
the lowest viscous sector of the mode. On the other hand, the integration path of the
complex mapping correctly passes between the viscous sectors. The mapping function
was designed, precisely, to avoid the viscous sectors of most of the L modes. In
particular, the constants H and A of the mapping were carefully set in order for the
path to pass through the point r =2.2178 + 1.6822i, corresponding to the diamond
symbol in the figure, which is always located between the viscous sectors (see Sipp &
Jacquin 2003, and Appendix C).

The performance of a mapping can also be understood when considering its ‘trace’
in the complex ω-plane, which is the image of the integration path through the
function ω = mΩ(r). In effect, it can be shown that a necessary condition for the
integration path to pass above the lower critical point of a particular mode is for its
trace in the complex ω-plane to pass below the frequency of this mode.
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The traces of both the real and the complex mappings are displayed in figure 26(b)
(for m =1). The trace of the real mapping (dashed line) is the real segment ω ∈ [0, 1].
Therefore it is not surprising that this mapping is unable to resolve most of the L
eigenmodes which are located below it. On the other hand, the trace of the complex
mapping (full line) passes well below the region containing all the eigenvalues, and is
therefore an efficient way to compute them.

Finally, we have to explain the very unusual behaviour of our complex mapping
at ξ → ±1. Normally, one would expect the mapping function to come back to the
real r-axis, because the boundary conditions are to be imposed at r = ±∞ in the real
direction. But, for the mapping (B 2), the imaginary part of r diverges at ξ → ±1.
However, ri grows less rapidly than rr , so that the path actually tends to the direction
of the real axis in a kind of “parabolic” way. This point may seem quite tricky, but it
was the only way for the trace of the mapping in the complex ω-plane to come back
to ω = 0 ‘from below’, and therefore to achieve the best resolution.

Appendix C. The inviscid singular modes (Landau poles)
In this Appendix we present results obtained for inviscid singular modes, for m =1

and m = 2. The numerical method used for this purpose is a shooting method closely
related to that used by Sipp (1999) and Sipp & Jacquin (2003). A contour deformation
rule has also been applied here, but in a different way than for the viscous case. As
explained in Sipp & Jacquin (2003), the inviscid equations are singular at the critical
points rc, which precisely correspond to the turning points of the viscous equations,
defined by (5.1). This relation defines a multi-valuated complex function rc(ω) related
to the complex Lambert function. So for each value of ω there is an infinite number
of critical points rc. As stated by Sipp & Jacquin (2003), and justified by Le Dizès &
Lacaze (2005), the integration path has to pass above the critical point of order zero
(corresponding to the principal branch of the Lambert function), and below the critical
points of higher order. In practice, the first four critical points were tracked and the
integration path was continuously deformed as the branches were computed. Note
that the spectral collocation method used in the viscous case has also been applied
here, and an excellent agreement was obtained between both methods. However, the
shooting method was found to be the most efficient to track the branches down to
k = 0.

Figure 27 displays the frequencies (real and imaginary parts) computed for m =1.
Three families of branches are displayed, and are referred to as inviscid singular
modes of the first, second and third kind. The first ones, displayed with thick lines,
were described by Sipp & Jacquin (2003). The two other kinds are newly discovered.
The figure displays six branches of the first kind, nine of the second kind and two of
the third kind, but it is likely that an infinite series exists for each kind. Contrary to the
first kind of branch which becomes neutral above a given value of their wavenumber
k, the new branches remain damped for all k. Note, however, that for moderate values
of k they are relatively less damped than those of the first kind.

Sipp & Jacquin (2003) carefully analysed the behaviour of the first kind of branch
as k → 0. They showed that the frequencies of all branches tend to a common limit.
Moreover, they showed that in that limit the critical points of order zero and one
coincide (see figure 12 of Sipp & Jacquin 2003). The same phenomenon was found
to occur for the second and third kind of branches. However, for the second kinds of
branch the coincidence occurs between the critical points of order zero and two, and
for the third kind between the critical points of order zero and three. This property
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Figure 27. Frequencies of the inviscid singular modes for m= 1: (a) oscillation rates ωr , (b)
damping rates ωi . Thick lines, thin lines and dashed lines correspond, respectively, to inviscid
singular modes of the first kind, second, and third kind.
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Figure 28. Frequencies of the inviscid singular modes for m= 2. Same legend as in figure 27.

served as a guideline in the discovery of these new families of branches. We have
not considered the possibility of a coincidence with the critical points of order four,
five, etc., but it is very likely that each of the critical points will lead to a new set of
branches.

Note that a coincidence between two critical points at a location r0 necessarily
corresponds to a root of the equation Ω ′(r0) = 0. This property may be used to predict
the k = 0 limit of the branches. The first root of this equation is r0 = 2.2178 + 1.6822i,
and gives the limit frequency for the first kind of branch: ω = 0.04746 − 0.1144i. The
two next roots are r0 = 2.8979 + 2.3946i and r0 = 3.4260 + 2.9515i and give the limit
frequencies for the second and third kinds of branch, respectively: ω =0.01778 −
0.06736i, and ω = 0.009469 − 0.04756i.

Finally, figure 28 displays the frequencies (real and imaginary parts) computed for
m =2 in the same way. Here again, branches belonging to the first, second and third
kinds could be computed. The first kind of branch was described by Sipp & Jacquin
(2003). The behaviour of these branches is much more complicated than for m =1,
but was partially explained by the asymptotic analysis of Le Dizès & Lacaze (2005).
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The new kinds of branch seem, comparatively, more regular. Note that as k = 0, all
branches of the same kind do not necessarily have the same limit, although a fraction
of these do.
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